

# 精氨酸酶活性检测试剂盒 Arginase Activity Assay Kit





















Catalog Number **AKAM022C**Storage Temperature **-20°C**Size **50T/24S** 

Visible Spectrophotometry

## 精氨酸酶活性检测试剂盒 Arginase Activity Assay Kit

#### 一、产品描述

精氨酸酶又称 L-精氨酸尿素水解酶或 L-精氨酸脒基水解酶, 在动植物、细菌和酵母中广泛存在, 能够催化 L-精氨酸转化为尿素和鸟氨酸, 从而帮助排除体内过量的氨基酸和尿素, 在尿素循环和氮代谢中发挥重要作用, 其活性变化与氨基酸代谢、尿素循环和氮平衡等生理过程密切相关。

精氨酸酶可催化 L-精氨酸 (L-Arginine) 分解为 L-鸟氨酸 (L-Ornithine) 和尿素 (Urea), 尿素与α-异亚硝基苯丙酮反应生成相应衍生物,产物在 560 nm 处具有特征吸收峰,通过吸光值变化即可表征精氨酸酶的活性。

#### 二、产品内容

| 名   | 称    | 试剂规格          | 储存条件   | 使用方法及注意事项                                      |  |
|-----|------|---------------|--------|------------------------------------------------|--|
| 提取液 | 组分 A | 液体 30 mL×1 瓶  | 4℃保存   | 按照组分 A:组分 B=99:1 的体积比配制                        |  |
| 灰状仪 | 组分 B | 液体 300 μL×1 支 | -20℃保存 | (根据使用量现用现配)                                    |  |
| 试剂一 |      | 粉剂×1 瓶        | 4℃保存   | 使用前加入 9.2 mL 试剂二充分溶解<br>(配制后 4℃可保存1个月,严禁-20℃保存 |  |
| 试剂二 |      | 液体 10 mL×1 瓶  | 4℃保存   | -                                              |  |
| 试剂三 |      | 液体 25 mL×1 瓶  | 4℃保存   | -                                              |  |
| 试剂四 |      | 液体 36 mL×1 瓶  | 4℃保存   |                                                |  |
| 试剂五 |      | 液体 15 mL×1 瓶  | 4℃保存   | -                                              |  |
| 标准液 |      | 液体 1 mL×1 支   | 4℃保存   | 1000 μmol/mL 尿素标准液                             |  |

**标准稀释液的制备:** 将 1000 μmol/mL 尿素标准液使用蒸馏水稀释至 50、25、12.5、6.25、3.125 μmol/mL 即为标准稀释液。

| 序号             | 1    | 2   | 3    | 4    | 5     |
|----------------|------|-----|------|------|-------|
| 稀释前浓度(μmol/mL) | 1000 | 50  | 25   | 12.5 | 6.25  |
| 标准液体积(μL)      | 50   | 500 | 500  | 500  | 500   |
| 蒸馏水体积(μL)      | 950  | 500 | 500  | 500  | 500   |
| 稀释后浓度(μmol/mL) | 50   | 25  | 12.5 | 6.25 | 3.125 |

Beijing Boxbio Science & Technology Co., Ltd.



#### 三、产品使用说明

测定过程中所需要的仪器和试剂:可见分光光度计、1 mL 玻璃比色皿(光径 10 mm)、研钵/匀浆器、可调式移液器、台式离心机、恒温水浴或培养箱和蒸馏水。

#### 1.粗酶液的制备(可根据预实验结果适当调整样本量及比例)

- ①组织:按照组织质量(g):提取液体积(mL)为1:(5-10)的比例(建议称取0.1g组织,加入1 mL提取液)处理样品,冰浴匀浆,4℃12000g离心10 min,取上清置于冰上待测。
- ②细菌或细胞: 离心收集细菌或细胞至离心管内, 按照细菌或细胞数量(10<sup>4</sup>个): 提取液体积(mL)为(500-1000):1的比例(建议500万细菌或细胞加入1 mL 提取液)处理样品, 冰浴超声破碎(功率200 W, 超声3 s, 间隔10 s, 总时间3 min), 4°C 12000 g 离心10 min, 取上清置于冰上待测。
  - ③培养液等液体样本:直接测定或适当稀释后再进行测定,若样本浑浊需离心后取上清测定。

## 2.测定步骤

- ①分光光度计预热 30 min 以上,调节波长至 560 nm,蒸馏水调零。
- ②在离心管中依次加入下列试剂 (避光条件下进行):

| <br>试剂                      | 测定管  | 对照管     | 标准管  | 空白管  |  |  |  |  |  |  |
|-----------------------------|------|---------|------|------|--|--|--|--|--|--|
| #\/\!\                      | (µL) | (µL)    | (μL) | (μL) |  |  |  |  |  |  |
| 粗酶液                         | 240  | 240     | -    | -    |  |  |  |  |  |  |
| 标准稀释液                       | -    | -       | 240  | -    |  |  |  |  |  |  |
| 蒸馏水                         | -    |         |      | 240  |  |  |  |  |  |  |
| 试剂一                         | 120  | 120     | 120  | 120  |  |  |  |  |  |  |
| 试剂三                         | 360  | 360     | 360  | 360  |  |  |  |  |  |  |
| 试剂四                         | -    | 480     | 480  | 480  |  |  |  |  |  |  |
| 充分混匀, 37℃避光反应 30 min        |      |         |      |      |  |  |  |  |  |  |
| 试剂四                         | 480  | -       | -    | -    |  |  |  |  |  |  |
| 充分混匀,8000 g 常温离心 5 min,取上清液 |      |         |      |      |  |  |  |  |  |  |
| 上清液                         | 1000 | 1000    | 1000 | 1000 |  |  |  |  |  |  |
| 试剂五                         | 200  | 200 200 |      | 200  |  |  |  |  |  |  |
| 充分混匀,沸水浴避光反应 40 min,冷却至室温   |      |         |      |      |  |  |  |  |  |  |
| 8000 g 常温离心 5 min,取上清液      |      |         |      |      |  |  |  |  |  |  |

注:沸水浴处理过程中注意密封以防止水分散失

吸光值测定: 吸取  $1 \, \text{mL}$  上清液至  $1 \, \text{mL}$  玻璃比色皿中,测定  $560 \, \text{nm}$  处吸光值,记为 A 测定、A 对照、A 标准和 A 空白;计算  $\Delta A$  测定=A 测定-A 对照, $\Delta A$  标准=A 标准-A 空白。注:每个样品均需设一个对照管,空白管只需测定 1-2 次。

Beijing Boxbio Science & Technology Co., Ltd.

**标准曲线的建立:** 以 50、25、12.5、6.25、3.125 μmol/mL 为横坐标(x),以其对应的ΔA 标准为 纵坐标(y),绘制标准曲线,得到标准方程 y=kx+b,将ΔA 测定带入公式中得到 x (μmol/mL)。

### 3.精氨酸酶活性计算

①按组织蛋白浓度计算

单位定义:每 mg 组织蛋白每分钟生成 1 μmol 尿素定义为一个酶活性单位。

Arginase (U/mg prot) = 
$$\frac{x}{Cpr \times T} = \frac{0.033 \times x}{Cpr}$$

②按组织样本质量计算

单位定义:每g组织每分钟生成1μmol尿素定义为一个酶活性单位。

Arginase (U/g) = 
$$\frac{x \times V$$
 样总  $= \frac{0.033 \times x}{W}$ 

③按细菌或细胞数量计算

单位定义:每10<sup>4</sup>个细菌或细胞每分钟生成1μmol 尿素定义为一个酶活性单位。

Arginase (U/
$$10^4$$
 cell) =  $\frac{x \times V \text{ 样总}}{\text{细菌或细胞数量} \times T} = \frac{0.033 \times x}{\text{细菌或细胞数量}}$ 

④按液体样本体积计算

单位定义:每 mL 液体样本每分钟生成 1 μmol 尿素定义为一个酶活性单位。

Arginase (U/mL) = 
$$\frac{x \times D}{T}$$
 = 0.033×x

**注释:** V 样总: 粗酶液总体积, 1 mL; Cpr: 样本蛋白浓度, mg/mL; W: 样本质量, g; 细菌或细胞数量: 以万计: T: 反应时间, 30 min。

#### 四、注意事项

- ①若A测定大于1.2或 △A测定大于1.0,建议将粗酶液适当稀释后再进行测定;若 △A测定小于0.02,建议适当延长酶促反应时间(第一步37℃反应时间)或增加样本量后再进行测定,计算时相应修改;
- ②为保证结果准确且避免试剂损失,测定前请仔细阅读说明书(以实际收到说明书内容为准),确认试剂储存和准备是否充分,操作步骤是否清楚,且务必取2-3个预期差异较大的样本进行预测定,过程中问题请您及时与工作人员联系。

For Research Use Only. Not for Use in Diagnostic Procedures.

















